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ABSTRACT
In multi-label learning, each training example is associated
with a set of labels and the task is to predict the proper label
set for the unseen example. Due to the tremendous (expo-
nential) number of possible label sets, the task of learning
from multi-label examples is rather challenging. Therefore,
the key to successful multi-label learning is how to effec-
tively exploit correlations between different labels to facili-
tate the learning process. In this paper, we propose to use a
Bayesian network structure to efficiently encode the condi-
tional dependencies of the labels as well as the feature set,
with the feature set as the common parent of all labels. To
make it practical, we give an approximate yet efficient proce-
dure to find such a network structure. With the help of this
network, multi-label learning is decomposed into a series of
single-label classification problems, where a classifier is con-
structed for each label by incorporating its parental labels
as additional features. Label sets of unseen examples are
predicted recursively according to the label ordering given
by the network. Extensive experiments on a broad range of
data sets validate the effectiveness of our approach against
other well-established methods.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Learning—concept learn-
ing, induction

General Terms
Algorithms

1. INTRODUCTION
Traditional supervised learning works under the single-

label scenario, i.e. each example is associated with one
single label characterizing its property. However, in many
real-world applications, objects are usually associated with
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multiple labels simultaneously. To name a few, in text cat-
egorization, each document may belong to several topics,
such as Shanghai World Expo, economics and even volun-
teers [14, 19]; In bioinformatics, each gene may be associ-
ated with a number of functional classes, such asmetabolism,
transcription and protein synthesis [7]; In automatic video
annotation, each video clip may be related to several seman-
tic classes, such as urban and building [16]. In multi-label
learning, each example in the training set is represented by a
feature vector and associated with a set of labels. The task
is then to predict the label sets of unseen examples through
analyzing training examples with known label sets.

Formally, learning from multi-label examples corresponds
to find a mapping from the space of features to the space of
label sets, i.e. the power set of all labels. Therefore, when
there is large or even moderate number of labels, the task
of multi-label learning would become rather challenging due
to the tremendous (exponential) number of possible label
sets. To cope with this issue, it is deemed that the correla-
tions between different labels should be exploited to facili-
tate multi-label learning [21, 23]. For example, the proba-
bility of an image be annotated with label Africa would be
high if we know it has labels lion and grassland ; a document
is unlikely to be labeled as politics if we know it is related
to entertainment. Thus, effective exploitation of correlation
information among different labels is crucial for the success
of any multi-label learning system.

Roughly speaking, existing strategies to multi-label learn-
ing problems can be characterized into the following cate-
gories based on the order of correlations considered by the
system:

• First-order approaches: The task of multi-label learn-
ing is tackled by considering decomposing it into a number
of independent binary classification problems, one for each
possible label [1, 4, 5, 29].

• Second-order approaches: The task of multi-label learn-
ing is tackled by considering the pairwise relations between
labels, such as the ranking between the proper label and the
improper label of an example [7, 8, 19, 28], or the interaction
between any pair of labels [9, 16, 24, 30].

• High-order approaches: The task of multi-label learning
is tackled by considering the high-order relations between la-
bels, such as the full-order style of imposing all other labels’
influences on each label in an indirect manner [3, 10, 11,
25], or the random style of combining an ensemble of clas-
sifiers each addressing correlations among a random subset
of labels [17, 18, 22].



First-order approaches simply ignore the correlations be-
tween different labels and this may weaken the generaliza-
tion abilities of these approaches. For the latter two strate-
gies however, their model complexities are usually high due
to the exploitation of label combinations. Furthermore, the
generality of these two strategies is also limited: a) Second-
order approaches may suffer from the fact that the corre-
lations between different labels would possibly go beyond
second-order. b) The full-order approaches may not work
well when certain structures exist among labels (e.g. label
subgroups), while the random approaches may not work well
due to their randomness in addressing label correlations.
In this paper, we aim to address the label correlations in

an effective yet computational efficient way. Specifically, a
novel approach named Lead (multi-label Learning by Ex-
ploiting lAbel Dependency) is proposed to learn from multi-
label examples.
At first, a Bayesian network (or directed acyclic graph,

DAG) is built to characterize the joint probability of all la-
bels conditioned on the feature set, such that correlations
among labels are explicitly expressed through their depen-
dency relations represented by the DAG structure. After
that, a binary classifier is learned for each label by treating
its parental labels in the DAG as additional input features.
Finally, the label sets of unseen examples are predicted by
reasoning with the identified Bayesian network together with
the learned binary classifiers.
In contrast to other multi-label learning approaches, Lead

bears the following advantages through employing Bayesian
network: 1) The underlying structure inherent in the label
space is explicitly expressed in a compact way, which of-
fers a promising opportunity to gain further insights on the
concerned learning problem; 2) It is capable of addressing
arbitrary order of label correlations, where the order of de-
pendency is “controlled” by the number of parents of each
label; 3) The model complexity is linear to the number of
possible labels (one binary classifier per label), and mak-
ing predictions for unseen example is straightforward with
respect to the Bayesian network and the learned classifiers.
Extensive experiments across a broad range of multi-label

data sets show that Lead achieves highly competitive per-
formance to the well-established first-order, second-order as
well as high-order approaches.
The rest of this paper is organized as follows. Section 2

presents the Lead approach. Section 3 reports our experi-
mental results. Finally, Section 4 concludes.

2. THE LEAD APPROACH
Let X = Rd be the d-dimensional input space and Y =

{1, 2, . . . , q} be finite set of q possible labels. Given a multi-
label training set D = {(xi, Yi) | 1 ≤ i ≤ m}, where xi ∈ X
is a feature vector and Yi ⊆ Y is the set of labels associated
with xi, the goal of multi-label learning is to learn a function
h : X → 2Y from D which maps each unseen example to
a set of proper labels. From the Bayesian point of view,
this problem can be reduced to model the conditional joint
distribution of P (y|x), where x ∈ X is the feature vector
while y = (y1, y2, . . . , yq) ∈ {0, 1}q is a binary label vector
indicating whether x is associated with the k-th label (yk =
1) or not (yk = 0).
As reviewed in Section 1, previous approaches tackle the

problem of modeling P (y|x) in various ways. First order ap-
proaches solve the problem by decomposing it into a num-
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Figure 1: The structures used to encode the con-
ditional dependencies/independencies of the labels.
(a) A loyal Bayesian network representation, where
all labels have common cause x, and we need to iden-
tify the links between yk given x. (b) A simplified
version, where we first eliminate the effects of x on
all labels and find the errors ek, and then exploit the
Bayesian network of the errors ek.

ber of independent tasks through modeling P (yk|x) (1 ≤
k ≤ q); Second-order approaches solve the problem by con-
sidering interactions between a pair of labels through mod-
eling P ((yk, yk′)|x) (k ̸= k′); High-order approaches solve
the problem by addressing correlations between a subset of
labels through modeling P ((yk1 , yk2 , . . . , ykq′ )|x) (q

′ ≤ q).
Our goal is to find a simple and efficient way to improve

the performance of multi-label learning by exploiting the
label dependencies. In this section we present the basic idea
and procedure of such an approach.

2.1 Basic Idea
Mathematically, multi-label learning aims to model and

predict p(y|x). Our objective is to make use of the condi-
tional dependencies among the labels yk (1 ≤ k ≤ q) such
that for each example we can better predict their combi-
nation. The problem is how to find and make use of such
conditional dependencies in an efficient way. To this end,
we adopt the Bayesian network [13] as a compact manner to
encode the label dependencies; for simplicity of the represen-
tation, we assume that the joint distribution of the labels yk
and the feature set X factorizes according to some Bayesian
network structure, or directed acyclic graph. Note that in
multi-label learning, all labels inherently depend on the fea-
ture set, therefore, x is the common parent of all labels.
Consequently, we have

p(y|x) =
q∏

k=1

p(yk|pak,x), (1)

where pak denotes the set of parents of the label yk, ex-
cluding the inherent parent x. In this way, the multi-label
classification problem is decomposed into a series of small-
scale single-label classification problems.

Fig. 1 (a) describes the relations among all labels yk, and
the feature set x (note that the links among yk are not given
since they are to be found). From this figure one can see
that there are two types of dependencies among the labels.
One is due to the common parent, i.e., the feature set x;
because of its effect, labels become dependent even if they
are conditionally independent given x. The other is the
direct dependencies of the labels. One should be aware that
the links among yk given in Fig. 1 (a) may be very different
from those implied by the conditional dependencies of yk
without considering the effect of x; in fact, the effect of the



common parent x makes learning the relations between yk
complicate.
Generally speaking, there exist two kinds of approaches to

Bayesian network structure learning [13]. One is constraint-
based, and the other is score-based. Constraint-based ap-
proaches exploit (conditional) independence relations be-
tween the variables to construct the causal structure. When
performing conditional independence tests in such approaches,
one usually assumes that the variables are either discrete
or jointly Gaussian with linear relations.1 Score-based ap-
proaches view a Bayesian network as specifying a statisti-
cal model and then address learning as a model selection
problem; they find the Bayesian network structure which
maximizes a score function reflecting the goodness of fit and
complexity of the model. In our problem, the labels are bi-
nary while the features are usually continuous. Moreover,
there are usually a large number of features, and the ef-
fect of the features on the labels are significantly nonlinear.
Consequently, both kinds of approaches mentioned above
would encounter difficulties in learning the structure shown
in Fig. 1 (a).

2.2 A Practical Approach

2.2.1 DAG’s on Errors: To Eliminate the Effect of
Features

We then aim to develop a simplified procedure to identify
the links between the labels in Fig. 1 (a), with the help of
certain reasonable assumptions. To facilitate the following
analysis, we consider the binary classification problem as a
special case of the nonlinear regression problem:

y = f(x) + e, (2)

where y denotes the target variable, x the set of predictors,
and e the noise. The following proposition shows the re-
lationship between maximizing the data likelihood of this
model and minimizing the mutual information between x
and the estimate of e.2

Proposition 1. Consider the nonlinear regression model
Eq. 2, where f is smooth function. Given the examples
{xi, yi}Ni=1, fitting the above model with maximum likelihood
is equivalent to minimizing the mutual information between
x and the estimate of e.

Proof of this proposition is given in the Appendix. We
view classification as an extreme case of nonlinear regression:
in classification, y denotes the target class label (0 or 1),
f involves threshold functions, and the error e, which is
discrete, may be 0, 1, or -1. e = 1 (-1) means that the
example, which actually came from class 1 (0), is classified
to class 0 (1).

1We note that recently, in the causal discovery scenario, a
constraint-based method was proposed to find the network
structure between a moderate number of continuous vari-
ables with nonlinear relations [27]. In principle it can be
easily extended to solve our problem; however, due to the
computational loads, it is not feasible if the number of labels
is large (say, larger then 20).
2Mutual information is a canonical measure of depen-
dence [6]. The mutual information amongst a set of vari-
ables v1, v2, ..., vn is defined as I(v1, ..., vn) =

∑n
i=1 H(vi)−

H(v1, ..., vn), where H(·) denotes the entropy. Mutual in-
formation is always non-negative, and is zero if and only if
the involved variables are mutually independent.

For two different classification problems exploiting the
same feature set, the following proposition holds straight-
forwardly.

Proposition 2. Suppose that we have two classification
problems with the same attributes:

y1 = f1(x) + e1 and y2 = f2(x) + e2. (3)

If (1) both e1 and e2 are independent from x, and (2) e1 and
e2 are also independent from each other, then y1 and y2 are
conditionally independent given x.

As an extension of Proposition 1, Condition (1) in Propo-
sition 2, which states that both e1 and e2 are independent
from x, approximately holds. Consequently, roughly speak-
ing, y1 and y2 are conditionally independent given the fea-
ture set x if and only if e1 is independent from e2.

In other words, here we reasonably assume that the effect
of x is “separable”: we can first eliminate the influences of x
in all labels, and then discover the conditional independen-
cies among yk (conditioned on x) by analyzing the errors.
The assumption may not always hold rigorously. However,
it provides a greatly simplified manner to identify the links
between yk in presence of the common parent x in the net-
work Fig. 1 (a).

2.2.2 Procedure of LEAD
We can then find the links between yk in the network

Fig. 1 (a) in the following way. We first eliminate the effects
of the feature set x on all labels by constructing classifiers
for all labels and finding the corresponding errors. Then,
we find the Bayesian network structure of the errors ek and
treat it as an approximate of that of the labels with x as
the common parent. Fig. 1 (b) illustrates this idea. With
this Bayesian network, we then find pak for each label yk
in Eq. 1. In our approach, we make use of the links in the
Bayesian network structure by directly incorporating pak

into the “feature set”when constructing the classifier for yk.
Our proposed approach consists of the following four steps.

1. Construct the classifiers for all labels independently.
This produces the error ek for each label yk (Eq. 2).

2. Learn the Bayesian network structure G of ek, 1 ≤ k ≤
q.

3. For each label yk, construct the new classifier Ck by
incorporating pak implied in the network G into the
feature set.

4. For testing data, recursively predict yk with the clas-
sifier Ck and the feature set x

∪
p̂ak according to the

ordering of the labels implied in G.

2.2.3 On Bayesian Network Learning
In Step 2 we need to choose suitable techniques for Bayesian

network structure learning. Over 50 software packages are
listed in [15] for different applications of Bayesian networks.
We used the BDAGL (Bayesian DAG learning) package,3

which implemented the dynamic programming-based algo-
rithm for computing the marginal posterior probability of
every edge in a Bayesian network [12]. This algorithm takes
O(q2q) both in time and space, where q is the number of

3
http://www.cs.ubc.ca/~murphyk/Software/BDAGL/index.html



variables. It is very efficient when q is small, and is limited
to about 20 variables. (In practice, it takes about 5 seconds
for 10 variables to about 5 minutes for 20 variables.) When
the number of variables is larger than 20, we resorted to the
Banjo (Bayesian ANalysis with Java Objects) package [20].
This package performs approximate maximum a posterior
(MAP) structure learning using simulated annealing and hill
climbing for searching, and is suitable to analyze large data
sets. When using it, one needs to specify the maximum run-
ning time and some other necessary parameters, and it will
finally report the best network found.

3. EXPERIMENTS

3.1 Evaluation Metrics
Performance evaluation in multi-label learning is much

more complicated than traditional single-label learning, as
each example is associated with multiple labels simultane-
ously. One straightforward solution is to calculate the clas-
sical single-label metric (such as precision, recall and F-
measure) on each possible label independently, and then
combine the metric value from each label through micro- or
macro-averaging [23]. However, this intuitive way of evalu-
ation fails to directly address the correlations between dif-
ferent labels of each example.
In this paper, five popular metrics specially designed for

multi-label learning [19, 23] are used, i.e. hamming loss, one-
error, coverage, ranking loss and average precision. Given
a multi-label data set S = {(xi, Yi)|1 ≤ i ≤ p}, the five
metrics are defined as below. Here, h(xi) returns a set of
proper labels of xi; h(xi, y) returns a real-value indicating
the confidence for y to be a proper label of xi; rank

h(xi, y)
returns the rank of y derived from h(xi, y).
• Hamming loss:

hlossS(h) =
1

p

p∑
i=1

1

|Y| |h(xi)∆Yi| (4)

Here ∆ denotes the symmetric difference between two sets.
The hamming loss evaluates how many times an example-
label pair is misclassified.
• One-error :

one-errorS(h) =
1

p

p∑
i=1

[[ [argmax
y∈Y

h(xi, y)] /∈ Yi]] (5)

Here for predicate π, [[π]] equals 1 if π holds and 0 otherwise.
The one-error evaluates how many times the top-ranked la-
bel is not in the set of proper labels of the example.
• Coverage:

coverageS(h) =
1

p

p∑
i=1

max
y∈Yi

rankh(xi, y)− 1 (6)

The coverage evaluates how many steps are need, on average,
to move down the label list in order to cover all the proper
labels of the example.
• Ranking loss:

rlossS(h) =
1

p

p∑
i=1

1

|Yi||Ȳi|
· |Ri|, where

Ri = {(y1, y2)|h(xi, y1) ≤ h(x, y2), (y1, y2) ∈ Yi × Ȳi} (7)

Here Ȳi denotes the complementary set of Yi in Y. The
ranking loss evaluates the average fraction of label pairs that
are misordered for the example.

• Average precision:

avgprecS(h) =
1

p

p∑
i=1

1

|Yi|
· |Pi|
rankh(xi, y))

, where

Pi = {y′|rankh(xi, y
′) ≤ rankh(xi, y), y

′ ∈ Yi} (8)

The average precision evaluates the average fraction of proper
labels ranked above a particular label y ∈ Yi.

For the first four metrics, the smaller the value the better
the performance. For average precision, on the other hand,
the larger the value the better the performance. Further-
more, we choose to normalize the coverage metric (Eq. 6)
by |Y| so that all the five metrics vary between [0 1].

3.2 Data Sets
A total of fourteen multi-label data sets are collected for

experiments in this paper, whose characteristics are summa-
rized in Table 1. Given a multi-label data set S = {(xi, Yi)|
1 ≤ i ≤ p}, we use |S|, dim(S), L(S), F (S) to represent the
number of examples, number of features, number of possible
labels, and feature type respectively. In addition, several
multi-label statistics [18, 23] are also shown in the Table:

a) Label cardinality LCard(S) = 1
p

∑p
i=1 |Yi|, which mea-

sures the average number of labels per example;

b) Label density LDen(|S|) = LCard(S)
L(S)

, which normalizes

LCard(S) by the number of possible labels;
c) Distinct label sets DL(S) = |{Y | ∃x : (x, Y ) ∈ S}|,

which counts the number of distinct label combinations ap-
peared in the data set;

d) Proportion of distinct label sets PDL(S) = DL(S)
|S| ,

which normalizes DL(S) by the number of examples.
As shown in Table 1, seven regular-scale data sets (first

part) as well as seven large-scale data sets (second part) are
included whose sizes are roughly ordered by |S|. In addition,
dimensionality reduction is performed on rcv1 (subset 1)

to rcv1 (subset 5) as well as tmc2007, where the top 2%
features with highest document frequency [26] are retained.
To the best of our knowledge, few works on multi-label
learning have conducted experimental evaluation across such
broad range of data sets. One notable exception is [18] where
a total of 12 data sets (6 regular-scale, 6 large-scale) are con-
sidered. Further details on these data sets are available at
different sites.4

Intuitively, for the data whose underlying joint label de-
pendence could be well represented by a DAG with the fea-
ture vector as a common parent, learning with Lead would
give excellent performance.

3.3 Experimental Results
In this paper, we compare Lead with several state-of-the-

art multi-label learning methods, including two first-order
approaches Bsvm [1] and Ml-knn [29], one second-order ap-
proach Bp-mll [28] and one high-order approach Ecc [18].
For fair comparison, Libsvm (with linear kernel) [2] is em-
ployed as the base classifier for Lead, Bsvm and Ecc.

Furthermore, parameters suggested in respective litera-
tures are used for the compared algorithms: For Bsvm,

4http://mlkd.csd.auth.gr/multilabel.html,
http://www.cs.waikato.ac.nz/~jmr30/



Table 1: Characteristics of the experimental data sets.

Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain

emotions 593 72 6 numeric 1.869 0.311 27 0.046 music

genbase 662 1185 27 nominal 1.252 0.046 32 0.048 biology

medical 978 1449 45 nominal 1.245 0.028 94 0.096 text

enron 1702 1001 53 nominal 3.378 0.064 753 0.442 text

image 2000 294 5 numeric 1.236 0.247 20 0.010 media

scene 2407 294 6 numeric 1.074 0.179 15 0.006 media

yeast 2417 103 14 numeric 4.237 0.303 198 0.082 biology

rcv1 (subset 1) 6000 944 101 numeric 2.880 0.029 1028 0.171 text

rcv1 (subset 2) 6000 944 101 numeric 2.634 0.026 954 0.159 text

rcv1 (subset 3) 6000 944 101 numeric 2.614 0.026 939 0.157 text

rcv1 (subset 4) 6000 944 101 numeric 2.484 0.025 816 0.136 text

rcv1 (subset 5) 6000 944 101 numeric 2.642 0.026 946 0.158 text

bibtex 7395 1836 159 nominal 2.402 0.015 2856 0.386 text

tmc2007 28596 981 22 nominal 2.158 0.098 1341 0.047 text

Table 2: Performance (mean±std.) of each algorithm in terms of hamming loss. •/◦ indicates whether LEAD

is statistically superior/inferior to the compared algorithm (pairwise t-test at 5% significance level).

Algorithm

Data Set Lead Bsvm Ml-knn Bp-mll Ecc

emotions 0.197±0.024 0.199±0.022 0.194±0.013 0.219±0.021• 0.192±0.021

genbase 0.001±0.001 0.001±0.001 0.005±0.002• 0.004±0.002• 0.001±0.001

medical 0.010±0.001 0.010±0.001 0.016±0.002• 0.019±0.002• 0.010±0.001

enron 0.050±0.003 0.060±0.003• 0.052±0.002• 0.052±0.003• 0.055±0.004•
image 0.173±0.011 0.176±0.007 0.170±0.008 0.253±0.024• 0.180±0.015•
scene 0.098±0.005 0.104±0.006 0.084±0.008◦ 0.282±0.014• 0.096±0.010◦
yeast 0.202±0.011 0.199±0.010 0.195±0.011◦ 0.205±0.010• 0.208±0.010•
rcv1 (subset 1) 0.027±0.001 0.026±0.001◦ 0.027±0.001• 0.033±0.001• 0.033±0.003•
rcv1 (subset 2) 0.023±0.001 0.023±0.001 0.024±0.001• 0.028±0.001• 0.029±0.002•
rcv1 (subset 3) 0.023±0.001 0.023±0.001 0.023±0.001 0.028±0.001• 0.029±0.003•
rcv1 (subset 4) 0.020±0.001 0.020±0.001 0.021±0.001• 0.025±0.001• 0.025±0.002•
rcv1 (subset 5) 0.023±0.001 0.023±0.001 0.024±0.001• 0.029±0.001• 0.028±0.002•
bibtex 0.013±0.001 0.016±0.001• 0.014±0.001• 0.016±0.001• 0.016±0.001•
tmc2007 0.063±0.001 0.063±0.001 0.073±0.001• 0.098±0.006• 0.064±0.001•

models are learned via the cross-training strategy [1]; For
Ml-knn, the number of nearest neighbors considered is set
to 10 and Euclidean distance is used as the distance mea-
sure [29]; For Bp-mll, the number of hidden neurons is set
to 20% of the dimensionality and the number of training
epochs is set to 100 [28]; For Ecc, the ensemble size is set
to 10 and sampling ratio is set to 67% [18].
Ten-fold cross-validation is performed on each experimen-

tal data set, where Tables 2 to 6 report the detailed results
in terms of different evaluation metrics. On each data set,
the mean metric value as well as the standard deviation
of each algorithm is recorded. Furthermore, to statistically
measure the significance of performance difference, pairwise
t-tests at 5% significance level are conducted between the al-
gorithms. Specifically, whenever Lead achieves significantly
better/worse performance than the compared algorithm on
any data set, a win/loss is counted and a maker •/◦ is shown
in the Table. Otherwise, a tie is counted and no marker is
given. The resulting win/tie/loss counts for Lead against

the compared algorithms are summarized in Tables 7 and 8,
grouped by |S| and L(S) respectively.

As shown in Table 7, for data sets with regular num-
ber of examples (|S| < 5000), Lead is significantly supe-
rior to the compared algorithms in 31.4% (Bsvm), 31.4%
(Ml-knn), 68.6% (Bp-mll) and 54.3% (Ecc) cases, and
is inferior to them in much less 0.0% (Bsvm), 17.1% (Ml-
knn), 8.6% (Bp-mll) and 17.1% (Ecc) cases; Furthermore,
for data sets with large number of examples (|S| > 5000),
Lead is significantly superior to the compared algorithms
in 57.1% (Bsvm), 97.1% (Ml-knn), 91.4% (Bp-mll) and
82.9% (Ecc) cases, and is inferior to them in much less 5.7%
(Bsvm), 0.0% (Ml-knn), 8.6% (Bp-mll) and 5.7% (Ecc)
cases. These results indicate that Lead is highly compet-
itive to the state-of-the-art approaches, especially on data
sets with large number of examples.

As shown in Table 8, for data sets with regular num-
ber of labels (L(S) < 50), Lead is significantly superior
to the compared algorithms in 17.1% (Bsvm), 34.3% (Ml-



Table 3: Performance (mean±std.) of each algorithm in terms of one-error. •/◦ indicates whether LEAD is
statistically superior/inferior to the compared algorithm (pairwise t-test at 5% significance level).

Algorithm

Data Set Lead Bsvm Ml-knn Bp-mll Ecc

emotions 0.248±0.071 0.253±0.070 0.263±0.067 0.318±0.057• 0.216±0.085

genbase 0.002±0.005 0.002±0.005 0.009±0.011 0.000±0.000 0.000±0.000

medical 0.139±0.044 0.151±0.054 0.252±0.045• 0.327±0.057• 0.099±0.034◦
enron 0.283±0.041 0.308±0.050• 0.313±0.035 0.237±0.038◦ 0.212±0.026◦
image 0.313±0.026 0.314±0.021 0.320±0.026 0.600±0.079• 0.289±0.026◦
scene 0.264±0.024 0.250±0.027 0.219±0.029◦ 0.821±0.031• 0.226±0.034◦
yeast 0.235±0.025 0.230±0.023 0.228±0.029 0.235±0.030 0.176±0.022◦
rcv1 (subset 1) 0.435±0.016 0.396±0.013◦ 0.548±0.018• 0.714±0.017• 0.441±0.028

rcv1 (subset 2) 0.411±0.016 0.407±0.018 0.521±0.018• 0.619±0.020• 0.413±0.030

rcv1 (subset 3) 0.421±0.014 0.477±.0127 0.519±0.024• 0.639±0.017• 0.428±0.039

rcv1 (subset 4) 0.358±0.019 0.391±0.082 0.457±0.022• 0.625±0.020• 0.377±0.027•
rcv1 (subset 5) 0.404±0.022 0.432±0.090 0.499±0.029• 0.718±0.019• 0.408±0.044

bibtex 0.404±0.013 0.444±0.011• 0.589±0.019• 0.431±0.024• 0.341±0.022◦
tmc2007 0.226±0.011 0.225±0.010 0.308±0.012• 0.444±0.050• 0.176±0.009◦

Table 4: Performance (mean±std.) of each algorithm in terms of coverage. •/◦ indicates whether LEAD is
statistically superior/inferior to the compared algorithm (pairwise t-test at 5% significance level).

Algorithm

Data Set Lead Bsvm Ml-knn Bp-mll Ecc

emotions 0.292±0.022 0.295±0.027 0.300±0.019 0.300±0.022 0.322±0.022•
genbase 0.019±0.015 0.011±0.005 0.021±0.013 0.025±0.012 0.013±0.007

medical 0.039±0.017 0.047±0.011• 0.060±0.025• 0.047±0.024• 0.071±0.023•
enron 0.232±0.016 0.425±0.037• 0.247±0.014• 0.204±0.012◦ 0.387±0.032•
image 0.184±0.007 0.189±0.021 0.194±0.020 0.343±0.029• 0.199±0.020•
scene 0.087±0.007 0.089±0.009 0.078±0.010◦ 0.374±0.024• 0.091±0.008•
yeast 0.455±0.019 0.514±0.018• 0.447±0.014 0.456±0.019 0.516±0.015•
rcv1 (subset 1) 0.124±0.006 0.219±0.008• 0.219±0.010• 0.222±0.010• 0.353±0.018•
rcv1 (subset 2) 0.108±0.007 0.206±0.010• 0.203±0.012• 0.250±0.010• 0.350±0.018•
rcv1 (subset 3) 0.112±0.006 0.207±0.010• 0.202±0.010• 0.262±0.005• 0.340±0.015•
rcv1 (subset 4) 0.095±0.008 0.187±0.010• 0.176±0.007• 0.245±0.010• 0.302±0.016•
rcv1 (subset 5) 0.106±0.007 0.200±0.011• 0.198±0.010• 0.229±0.008• 0.342±0.013•
bibtex 0.159±0.007 0.226±0.010• 0.340±0.008• 0.096±0.005◦ 0.347±0.011•
tmc2007 0.135±0.002 0.135±0.003 0.183±0.004• 0.268±0.021• 0.239±0.008•

knn), 80.0% (Bp-mll) and 54.3% (Ecc) cases, and is infe-
rior to them in much less 0.0% (Bsvm), 17.1% (Ml-knn),
0.0% (Bp-mll) and 17.1% (Ecc) cases; Furthermore, for
data sets with large number of labels (L(S) > 50), Lead is
significantly superior to the compared algorithms in 71.4%
(Bsvm), 97.1% (Ml-knn), 80.0% (Bp-mll) and 82.9% (Ecc)
cases, and is inferior to them in much less 5.7% (Bsvm), 0.0%
(Ml-knn), 11.4% (Bp-mll) and 5.7% (Ecc) cases. In gen-
eral, correlations among labels would be complex when the
label space becomes larger. Therefore, it is very attracting
that Lead gains greater advantages over the comparing al-
gorithms when there is large number class labels, which vali-
dates Lead’s effectiveness in exploiting label dependency to
facilitate multi-label learning.

4. CONCLUSION
In this paper, a novel approach to multi-label learning

is proposed by exploiting the dependencies among labels.
Specifically, Bayesian networks are employed to represent
the joint distribution of the label space conditioned on the
feature space, which is capable of modeling arbitrary order
of label correlations. We present an efficient way to approx-
imately find such networks, by working on the classification
errors of all labels, instead of of the original labels. The
learning system involves a complexity linear in the number
of possible labels. Experiments over a broad range of data
sets show that our method is highly comparable to the state-
of-the-art approaches, especially on learning tasks with large
number of labels as well as examples. Due to its accuracy
and efficiency, Lead is expected to be a practically appeal-
ing multi-label learning method for large-scale problems.

In the future, we will explore if there exist better ways
to identify, encode, and make use of the conditional depen-



Table 5: Performance (mean±std.) of each algorithm in terms of ranking loss. •/◦ indicates whether LEAD

is statistically superior/inferior to the compared algorithm (pairwise t-test at 5% significance level).

Algorithm

Data Set Lead Bsvm Ml-knn Bp-mll Ecc

emotions 0.154±0.029 0.156±0.034 0.163±0.022 0.173±0.020• 0.233±0.040•
genbase 0.005±0.008 0.001±0.002 0.006±0.006 0.008±0.006 0.008±0.008

medical 0.024±0.016 0.032±0.012• 0.042±0.021• 0.032±0.018• 0.098±0.032•
enron 0.084±0.008 0.180±0.022• 0.093±0.007• 0.068±0.006 0.241±0.025•
image 0.164±0.018 0.169±0.019 0.175±0.019 0.366±0.037• 0.245±0.024•
scene 0.087±0.009 0.089±0.011 0.076±0.012◦ 0.434±0.026• 0.135±0.013•
yeast 0.172±0.015 0.200±0.013• 0.166±0.015 0.171±0.015 0.285±0.022•
rcv1 (subset 1) 0.051±0.003 0.097±0.004• 0.105±0.005• 0.115±0.006• 0.382±0.025•
rcv1 (subset 2) 0.046±0.003 0.096±0.005• 0.100±0.007• 0.152±0.007• 0.377±0.031•
rcv1 (subset 3) 0.049±0.002 0.097±0.006• 0.100±0.006• 0.166±0.002• 0.368±0.020•
rcv1 (subset 4) 0.040±0.003 0.091±0.004• 0.083±0.005• 0.155±0.006• 0.317±0.026•
rcv1 (subset 5) 0.043±0.003 0.091±0.008• 0.095±0.005• 0.118±0.004• 0.369±0.025•
bibtex 0.086±0.005 0.127±0.006• 0.209±0.006• 0.051±0.003◦ 0.411±0.013•
tmc2007 0.055±0.002 0.054±0.002 0.089±0.003• 0.147±0.015• 0.179±0.006•

Table 6: Performance (mean±std.) of each algorithm in terms of average precision. •/◦ indicates whether
LEAD is statistically superior/inferior to the compared algorithm (pairwise t-test at 5% significance level).

Algorithm

Data Set Lead Bsvm Ml-knn Bp-mll Ecc

emotions 0.811±0.035 0.807±0.037 0.799±0.031 0.779±0.027• 0.796±0.042•
genbase 0.994±0.008 0.998±0.004 0.989±0.010• 0.988±0.010• 0.994±0.006

medical 0.890±0.037 0.871±0.047• 0.806±0.036• 0.782±0.042• 0.872±0.033•
enron 0.663±0.022 0.591±0.035• 0.626±0.022• 0.705±0.025◦ 0.640±0.025•
image 0.799±0.017 0.796±0.015 0.792±0.017 0.601±0.040• 0.794±0.016

scene 0.848±0.014 0.849±0.016 0.869±0.017◦ 0.445±0.018• 0.852±0.016

yeast 0.761±0.020 0.749±0.019• 0.765±0.021 0.754±0.020• 0.728±0.019•
rcv1 (subset 1) 0.600±0.009 0.588±0.008• 0.478±0.011• 0.388±0.011• 0.475±0.020•
rcv1 (subset 2) 0.641±0.010 0.612±0.011• 0.513±0.012• 0.389±0.011• 0.498±0.014•
rcv1 (subset 3) 0.629±0.011 0.576±0.054• 0.523±0.013• 0.388±0.009• 0.499±0.018•
rcv1 (subset 4) 0.683±0.012 0.635±0.036• 0.575±0.016• 0.407±0.014• 0.558±0.017•
rcv1 (subset 5) 0.642±0.016 0.600±0.047• 0.530±0.019• 0.391±0.005• 0.507±0.028•
bibtex 0.537±0.009 0.516±0.010• 0.350±0.011• 0.557±0.013◦ 0.512±0.013•
tmc2007 0.802±0.005 0.804±0.005 0.726±0.007• 0.603±0.031• 0.768±0.005•

dencies of the labels with the feature set as the common
parent.
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APPENDIX
A. PROOF OF PROPOSITION 1

Proof. Denote by ê and f̂ the estimate of e and f , re-
spectively. Suppose that the density of the noise, pe, is given
(which may be adaptively estimated from data or fixed to
a reasonable prior distribution). The maximum likelihood
estimate of f and e is obtained by maximizing the data log-
likelihood

l =

N∑
i=1

log p(yi|xi) =

N∑
i=1

log pe(yi − f̂(xi)). (9)

Now let us see how the above quantity is related to I(x, ê),
the mutual information between x and the estimate of e.
Consider the transformation from (x, y)T to (x, ê)T . As

ê = y− f̂(x), the Jacobian matrix in that transformation is

J =

(
∂x
∂x

∂x
∂y(

∂ê
∂x

)T ∂ê
∂y

)
=

(
I 0

−( ∂f̂
∂x

)T 1

)
,

where I denotes the identity matrix and 0 denotes the vector
of zeros. Clearly, one can see that the determinant of J is
|J| = 1. Consequently, we have p(x, ê) = p(x, y)/|J| =
p(x, y). That is, the joint entropy of (x, ê) is

H(x, ê) = −E{log p(x, ê)} = −E{log p(x, y)} = H(x, y).

Mutual information between x and ê is then

I(x, ê) = H(x) +H(ê)−H(x, ê)

= H(x) +H(ê)−H(x, y).

As the first and third terms in the above quantity do not de-
pend on f̂ , minimizing I(x, ê) is then equivalent to minimiz-

ing H(ê), or maximizing
∑N

i=1 log pe(êi) =
∑N

i=1 log pe(yi −
f̂(xi)), which is exactly the log-likelihood given in Eq. 9.
One can then see that maximum likelihood is equivalent to
minimizing the mutual information between x and ê.


